Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available November 1, 2025
- 
            Cosmic Explorer is a next-generation ground-based gravitational-wave observatory that is being designed in the 2020s and is envisioned to begin operations in the 2030s together with the Einstein Telescope in Europe. The Cosmic Explorer concept currently consists of two widely separated L-shaped observatories in the United States, one with 40 km-long arms and the other with 20 km-long arms. This order of magnitude increase in scale with respect to the LIGO-Virgo-KAGRA observatories will, together with technological improvements, deliver an order of magnitude greater astronomical reach, allowing access to gravitational waves from remnants of the first stars and opening a wide discovery aperture to the novel and unknown. In addition to pushing the reach of gravitational-wave astronomy, Cosmic Explorer endeavors to approach the lifecycle of large scientific facilities in a way that prioritizes mutually beneficial relationships with local and Indigenous communities. This article describes the (scientific, cost and access, and social) criteria that will be used to identify and evaluate locations that could potentially host the Cosmic Explorer observatories.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Middle and Late Holocene sediments have not been extensively sampled in Lake Tanganyika, and much remains unknown about the response of the Rift Valley’s largest lake to major environmental shifts during the Holocene, including the termination of the African Humid Period (AHP). Here, we present an integrated study (sedimentology, mineralogy, and geochemistry) of a radiocarbon-dated sediment core from the Kavala Island Ridge (KIR) that reveals paleoenvironmental variability in Lake Tanganyika since the Middle Holocene with decadal to centennial resolution. Massive blue-gray sandy silts represent sediments deposited during the terminal AHP (~5880–4640 cal yr BP), with detrital particle size, carbon concentrations, light stable isotopes, and mineralogy suggesting an influx of river-borne soil organic matter and weathered clay minerals to the lake at that time. Enhanced by the AHP’s warm and wet conditions, chemical weathering and erosion of Lake Tanganyika’s watershed appears to have promoted considerable nutrient recharge to the lake system. Following a relatively gradual termination of the AHP over the period from ~4640 cal yr BP to ~3680 cal yr BP, laminated and organic carbon-rich sediments began accumulating on the KIR. δ15Nbulk, C/N, and hydrogen index data suggest high relative primary production from a mix of algae and cyanobacteria, most likely in response to nutrient availability in the water column under a cooler and seasonally dry climate from ~3680 to 1100 cal yr BP. Sediments deposited during the Common Era show considerable variability in magnetic susceptibility, total organic carbon content, carbon isotopes, and C/N, consistent with dynamic hydroclimate conditions that affected the depositional patterns, including substantial changes around the Medieval Climate Anomaly and Little Ice Age. Data from this study highlight the importance of sedimentary records to constrain boundary conditions in hydroclimate and nutrient flux that can inform long-term ecosystem response in Lake Tanganyika.more » « less
- 
            Abstract The oldest structures in a rift basin define incipient rift architecture, and commonly modulate the patterns of landscape evolution, sedimentation, and associated hazards in subsequent phases of rift development. However, due to deep burial beneath younger, thick syn‐rift sequences, and limited resolution of seismic imaging, critical early‐rift processes remain poorly understood. In the Tanganyika Rift, East Africa, we augment existing 2‐dimensional (2‐D) seismic reflection data with newly acquired aeromagnetic and Full‐Tensor Gradiometry data to assess the deep basin and underlying basement structure. Aeromagnetic and gravity grids show a dominance of NW‐trending long‐wavelength (>5 km) structural fabrics corresponding to the deeper basement, and dominant NW‐trending with a secondary NNE‐trending shorter‐wavelength (<3 km) fabric representing shallower, intra‐basin structures. Seismically‐constrained 2‐D forward modeling of the aeromagnetic and gravity data reveals: (a) an anomalously high‐density (2.35–2.45 g/cc) deep‐seated, fault‐bounded wedge‐shaped sedimentary unit that directly overlies the pre‐rift basement, likely of Mesozoic (Karoo) origin; (b) ∼4 km‐wide sub‐vertical low‐density (2.71 g/cc) structures within the 3.2 g/cc basement, interpreted to be inherited basement shear zones, (c) early‐rift intra‐basin faults co‐located with the modeled shear zone margins, in some places defining a persistent structurally‐controlled intra‐basin “high,” and (d) a shallow intra‐sedimentary V‐shaped zone of comparatively dense material (∼2.2 g/cc), interpreted to be a younger axial channel complex confined between the intra‐basin “high” and border fault. These results provide new insight into the earliest basin architecture of the Tanganyika Rift, controlled by inherited basement structure, and provide evidence of their persistent influence on the subsequent basin evolution.more » « less
- 
            Abstract Ice streams are sites of ice-sheet drainage and together with other processes, such as calving, have an impact on deglaciation rates and ice-sheet mass balance. Proglacial lake deposits provide records of ice-sheet deglaciation and have the potential to supplement other paleoclimate records. Oneida Lake, northeastern USA, contains a thick proglacial lake sequence that buries evidence of ice streaming and a paleo-calving margin that developed during retreat of the Laurentide Ice Sheet. Previous high-resolution digital elevation models identified the Oneida Ice Stream from glacial landforms northwest of the lake. In this study, we utilize seismic refractions from a multichannel seismic (MCS) reflection dataset to estimate the thickness of glacial deposits using seismic tomography. With this method we constrain the depth to top of Paleozoic strata, especially in areas where the reflection data yielded poor outcomes and validate our reflection data in regions of good coverage. We demonstrate that where long offset seismic data are available, the first-arrival tomography method is useful in studies of formerly glaciated basins. Our study identifies a ~108 m thick sedimentary section and potentially long paleoclimate record in Oneida Lake, and identifies a paleotopographic low that likely encouraged formation of the Oneida Ice Stream.more » « less
- 
            Abstract The interplay of rapid climate change and tectonics drives landscape development, sediment routing, and deposition in early‐stage continental rift systems. The Lake Malawi Rift, in the Western Branch of the East African Rift, is an archetype of a juvenile rift and an ideal natural laboratory for evaluating lacustrine source‐to‐sink systems on orbital or shorter timescales. We examine the interplay of these processes over the past 140 kyr using observations from nested seismic reflection data sets tied to scientific drill cores, which calibrate numerical forward models of this closed sedimentary system. Fault slip rates measured from seismic data drive tectonic displacements in the model. Satellite‐derived precipitation maps constrain modern precipitation and are scaled to previous hydrologic balance studies to reconstruct past climates. Our model reproduces known sediment thicknesses across the rift and accounts for 96% of the estimated siliciclastic sediment deposited over the past 140 kyr. The results demonstrate that the onset of arid climate conditions (140–95 kyr BP) causes extreme drainage adjustments downstream and the formation of mega‐catchments that flow axially into a shallow restricted paleo‐lake. Sedimentation rates during this time are twice the present values due to increased sediment focusing via these axial systems into a much smaller, hydrologically closed lake. As the climate became wetter (95–50 kyr BP), the lake rapidly expanded, decreasing both erosion and sedimentation rates across the rift. This closed‐loop approach allows us to evaluate the role of high‐frequency climate change in modulating basin physiography as well as sediment fluxes in juvenile rift systems.more » « less
- 
            Abstract Half‐graben basins bounded by border faults typify early‐stage continental rifts. Deciphering the role that intra‐rift faults play in rift basin development is challenging as patterns of early‐stage faulting are commonly overprinted by subsequent deformation; yet the characterization of these faults is crucial to understand the fundamental controls on their evolution, their contribution to rift opening, and to assess their seismic hazard. By integrating multiple offshore seismic reflection data sets with age‐dated drill core, late‐Quaternary and cumulative faulting patterns are characterized in the Central and South Basins of the Malawi (Nyasa) Rift, an active, early‐stage rift system. Almost all intra‐rift faults offset a late‐Quaternary lake lowstand surface, suggesting they are active and should be considered in hazard assessments. Fault throw profiles reveal sawtooth patterns indicating segmented slip histories. Observed extension on intra‐rift faults is approximately twice that predicted from hanging wall flexure of the border fault, suggesting that intra‐rift faults accommodate a proportion of the regional extension. Cumulative and late‐Quaternary throws on intra‐rift faults are correlated with throw measured on the border fault in the Central Basin, whereas an anticorrelation is observed in the South Basin. Viewed in a regional context, these differences do not relate solely to the proposed southward younging of the rift. Instead, it is inferred that the distribution of extension is also influenced by variations in lithospheric structure and crustal heterogeneities that are documented along the rift axis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
